Introduction to Eigenvalues and Eigenvectors

Example: Consider the matrix $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ and vectors $\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \boldsymbol{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Fill in the given blanks.

$$A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \underbrace{\begin{bmatrix} 3 & 1 \\ -1 \end{bmatrix}}_{A v_{1}} = \underbrace{\begin{bmatrix} 1 \\ -1 \end{bmatrix}}_{-1} = \underbrace{\begin{bmatrix} 1 \\ -1 \end{bmatrix}}_{-1}$$

We call the vector $v_{1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ an *eigenvector* of A with corresponding *eigenvalue* $\lambda_{1} = 1$.

$$A\begin{bmatrix}1\\0\end{bmatrix} = \frac{\begin{bmatrix}5\\0\end{bmatrix} \begin{bmatrix}2\\0\end{bmatrix} \begin{bmatrix}2\\0\end{bmatrix} = \begin{bmatrix}2\\0\end{bmatrix}$$

$$\underline{Av_2} = A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \underbrace{ \begin{bmatrix} 2 \\ -2 \end{bmatrix}}_{=} = \underbrace{ 2 \\ -2 \end{bmatrix} = \underbrace{ 2 \\ -2 \end{bmatrix}$$

We call the vector $\boldsymbol{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ an *eigenvector* of A with corresponding *eigenvalue* $\lambda_2 = 2$.

Definition: Let A be a $n \times n$ matrix. We call a nonzero vector \boldsymbol{x} an eigenvector of A with corresponding eigenvalue λ (a scalar) if

$$A\boldsymbol{x} = \lambda \boldsymbol{x}, \qquad \boldsymbol{x} \neq \boldsymbol{0} \tag{1}$$

Example: Consider the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ and vectors $\boldsymbol{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \boldsymbol{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Show that $\boldsymbol{v}_1, \boldsymbol{v}_2$ are eigenvectors of A. What are the corresponding eigenvalues?

$$A\vec{v}_{1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 \\ 12 \end{bmatrix} = \underbrace{4} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 4\vec{v}_{1}$$
Thus, \vec{v}_{1} is an eigenvector of A with eigenvalue $\lambda_{1} = 4$

$$A\vec{v}_{2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = (-1) \begin{bmatrix} -1 \\ -1 \end{bmatrix} = (-1)\vec{v}_{2}$$
Thus, \vec{v}_{2} is an eigenvector of A with eigenvalue $\lambda_{2} = (-1)$